Well, we have the following circuit:

simulate this circuit – Schematic created using CircuitLab
When we use and apply KCL, we can write the following set of equations:
$$0=\text{I}_1\left(t\right)+\text{I}_2\left(t\right)+\text{I}_3\left(t\right)\tag1$$
When we use and apply Ohm's law, we can write the following set of equations:
$$
\begin{cases}
\begin{alignat*}{1}
\text{I}_1\left(t\right)&=\text{C}\cdot\text{V}'\left(t\right)\\
\\
\text{I}_2\left(t\right)&=\frac{\displaystyle1}{\displaystyle\text{L}}\cdot\text{V}'\left(t\right)\\
\\
\text{I}_3\left(t\right)&=\frac{\displaystyle1}{\displaystyle\text{R}}\cdot\text{V}\left(t\right)
\end{alignat*}
\end{cases}\tag2
$$
Now, we can use \$(2)\$ to rewrite \$(1)\$:
$$0=\text{C}\cdot\text{V}'\left(t\right)+\frac{\displaystyle1}{\displaystyle\text{L}}\cdot\text{V}'\left(t\right)+\frac{\displaystyle1}{\displaystyle\text{R}}\cdot\text{V}\left(t\right)\tag3$$
Which, when solved gives:
$$\text{V}\left(t\right)=\mathscr{K}\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)\tag4$$
So, we also know:
\begin{equation}
\begin{split}
\text{V}'\left(t\right)&=\frac{\displaystyle\partial}{\displaystyle\partial t}\left(\mathscr{K}\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)\right)\\
\\
&=-\frac{\displaystyle\text{L}\mathscr{K}}{\displaystyle\text{R}\left(1+\text{CL}\right)}\cdot\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)
\end{split}\tag5
\end{equation}
Edit, assuming that \$\displaystyle\text{V}_\text{C}\left(0\right)=\text{V}\left(0\right)=\hat{\text{u}}_0\$, we get:
$$\hat{\text{u}}_0=\mathscr{K}\exp\left(-\frac{\displaystyle\text{L}\cdot0}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)=\mathscr{K}\cdot1=\mathscr{K}\tag6$$
So, we end up with:
$$\text{V}\left(t\right)=\hat{\text{u}}_0\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)\tag7$$
And:
$$
\begin{cases}
\begin{alignat*}{1}
\text{I}_1\left(t\right)&=-\frac{\displaystyle\text{CL}\hat{\text{u}}_0}{\displaystyle\text{R}\left(1+\text{CL}\right)}\cdot\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)\\
\\
\text{I}_2\left(t\right)&=-\frac{\displaystyle\hat{\text{u}}_0}{\displaystyle\text{R}\left(1+\text{CL}\right)}\cdot\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)\\\
\\
\text{I}_3\left(t\right)&=\frac{\displaystyle\hat{\text{u}}_0}{\displaystyle\text{R}}\cdot\exp\left(-\frac{\displaystyle\text{L}t}{\displaystyle\text{R}\left(1+\text{CL}\right)}\right)
\end{alignat*}
\end{cases}\tag8
$$