When using integer values in my own code, I always try to consider the signedness, asking myself if the integer should be signed or unsigned.
When I'm sure the value will never need to be negative, I then use an unsigned integer.
And I have to say this happen most of the time.
To carefully consider which type that is most suitable each time you declare a variable is very good practice! This means you are careful and professional. You should not only consider signedness, but also the potential max value that you expect this type to have.
The reason why you shouldn't use signed types when they aren't needed have nothing to do with performance, but with type safety. There are lots of potential, subtle bugs that can be caused by signed types:
The various forms of implicit promotions that exist in C can cause your type to change signedness in unexpected and possibly dangerous ways. The integer promotion rule that is part of the usual arithmetic conversions, the lvalue conversion upon assignment, the default argument promotions used by for example VA lists, and so on.
When using any form of bitwise operators or similar hardware-related programming, signed types are dangerous and can easily cause various forms of undefined behavior.
By declaring your integers unsigned, you automatically skip past a whole lot of the above dangers. Similarly, by declaring them as large as unsigned int or larger, you get rid of lots of dangers caused by the integer promotions.
Both size and signedness are important when it comes to writing rugged, portable and safe code. This is the reason why you should always use the types from stdint.h and not the native, so-called "primitive data types" of C.
So I asked myself: «is there a good reason for this, or do people just use signed integers because the don't care»?
I don't really think it is because they don't care, nor because they are lazy, even though declaring everything int is sometimes referred to as "sloppy typing" - which means sloppily picked type more than it means too lazy to type.
I rather believe it is because they lack deeper knowledge of the various things I mentioned above. There's a frightening amount of seasoned C programmers who don't know how implicit type promotions work in C, nor how signed types can cause poorly-defined behavior when used together with certain operators.
This is actually a very frequent source of subtle bugs. Many programmers find themselves staring at a compiler warning or a peculiar bug, which they can make go away by adding a cast. But they don't understand why, they simply add the cast and move on.
for( unsigned int i = foo.Length() - 1; i >= 0; --i ) {}
To me, this is just bad design
Indeed it is.
Once upon a time, down-counting loops would yield more effective code, because the compiler pick add a "branch if zero" instruction instead of a "branch if larger/smaller/equal" instruction - the former is faster. But this was at a time when compilers were really dumb and I don't believe such micro-optimizations are relevant any longer.
So there is rarely ever a reason to have a down-counting loop. Whoever made the argument probably just couldn't think outside the box. The example could have been rewritten as:
for(unsigned int i=0; i<foo.Length(); i++)
{
unsigned int index = foo.Length() - i - 1;
thing[index] = something;
}
This code should not have any impact on performance, but the loop itself turned a whole lot easier to read, while at the same time fixing the bug that your example had.
As far as performance is concerned nowadays, one should probably spend the time pondering about which form of data access that is most ideal in terms of data cache use, rather than anything else.
Some people may also say that signed integers may be useful, even for non-negative values, to provide an error flag, usually -1.
That's a poor argument. Good API design uses a dedicated error type for error reporting, such as an enum.
Instead of having some hobbyist-level API like
int do_stuff (int a, int b); // returns -1 if a or b were invalid, otherwise the result
you should have something like:
err_t do_stuff (int32_t a, int32_t b, int32_t* result);
// returns ERR_A is a is invalid, ERR_B if b is invalid, ERR_XXX if... and so on
// the result is stored in [result], which is allocated by the caller
// upon errors the contents of [result] remain untouched
The API would then consistently reserve the return of every function for this error type.
(And yes, many of the standard library functions abuse return types for error handling. This is because it contains lots of ancient functions from a time before good programming practice was invented, and they have been preserved the way they are for backwards-compatibility reasons. So just because you find a poorly-written function in the standard library, you shouldn't run off to write an equally poor function yourself.)
Overall, it sounds like you know what you are doing and giving signedness some thought. That probably means that knowledge-wise, you are actually already ahead of the people who wrote those posts and guides you are referring to.
The Google style guide for example, is questionable. Similar could be said about lots of other such coding standards that use "proof by authority". Just because it says Google, NASA or Linux kernel, people blindly swallow them no matter the quality of the actual contents. There are good things in those standards, but they also contain subjective opinions, speculations or blatant errors.
Instead I would recommend referring to real professional coding standards instead, such as MISRA-C. It enforces lots of thought and care for things like signedness, type promotion and type size, where less detailed/less serious documents just skip past it.
There is also CERT C, which isn't as detailed and careful as MISRA, but at least a sound, professional document (and more focused towards desktop/hosted development).