Your code is broken for a=0 - single step through it in your head, or in a debugger, to see what happens.
Given this specific condition, it's equivalent to (unsigned)a <= 1U (because negative integer convert to huge unsigned values). You can do a single cmp and movls / movhi. Compilers already spot this optimization; here's how to ask a compiler to make asm for you so you can learn the tricks clever humans programmed into them:
int foo(int a) {
if(a == 0 || a == 1){
a = 1;
}
else{
a = 2;
}
return a;
}
With ARM GCC10 -O3 -marm on the Godbolt compiler explorer:
foo:
cmp r0, #1
movls r0, #1
movhi r0, #2
bx lr
See How to remove "noise" from GCC/clang assembly output? for more about making functions that will have useful asm output. In this case, r0 is the first arg-passing register in the calling convention, and also the return-value register.
I also included another C version using if (a <= 1U) to show that it compiles to the same asm. (1U is an unsigned constant, so C integer promotion rules implicitly convert a to unsigned so the types match for the <= operator. You don't need to explicitly do (unsigned)a <= 1U.)
General case: not a single range
For a case like a==0 || a==3 that isn't a single range-check, you can predicate a 2nd cmp. (Godbolt)
foo:
cmp r0, #3 # sets Z if a was 3
cmpne r0, #0 # leaves Z unmodified if it was already set, else sets it according to a == 0
moveq r0, #1
movne r0, #2
bx lr
You can similarly chain && like a==3 && b==4, or for checks like a >= 3 && a <= 7 you can sub / cmp, using the same unsigned-compare trick as the 0 or 1 range check after sub maps a values into the 0..n range. See the Godbolt link for that.