Tracing through the numpy C code is a slow and tedious process. I prefer to deduce patterns of behavior from timings.
Make a sample array and its transpose:
In [168]: A = np.random.rand(1000,1000)
In [169]: At = A.T
First a fast view - no coping of the databuffer:
In [171]: timeit B = A.ravel()
262 ns ± 4.39 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
A fast copy (presumably uses some fast block memory coping):
In [172]: timeit B = A.copy()
2.2 ms ± 26.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
A slow copy (presumably requires traversing the source in its strided order, and the target in its own order):
In [173]: timeit B = A.copy(order='F')
6.29 ms ± 2.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Copying At without having to change the order - fast:
In [174]: timeit B = At.copy(order='F')
2.23 ms ± 51.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Like [173] but going from 'F' to 'C':
In [175]: timeit B = At.copy(order='C')
6.29 ms ± 4.16 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [176]: timeit B = At.ravel()
6.54 ms ± 214 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Copies with simpler strided reordering fall somewhere in between:
In [177]: timeit B = A[::-1,::-1].copy()
3.75 ms ± 4.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [178]: timeit B = A[::-1].copy()
3.73 ms ± 6.48 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [179]: timeit B = At[::-1].copy(order='K')
3.98 ms ± 212 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
This astype also requires the slower copy:
In [182]: timeit B = A.astype('float128')
6.7 ms ± 8.12 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
PyArray_NewFromDescr_int is described as Generic new array creation routine. While I can't figure out where it copies data from the source to the target, it clearly is checking order and strides and dtype. Presumably it handles all cases where the generic copy is required. The axis permutation isn't a special case.