I believe can achieve similar results to @Federico Dorato answer without use of for loop. Return a list rather than a series and use lambda-apply + to_list() to expand results.
It's cleaner code and on a random df of 10,000,000 rows performs as well or faster.
Federico's code
run_time = []
for i in range(0,25):
df = pd.DataFrame(np.random.randint(0,10000000,size=(2, 2)), columns=list('AB'))
def run_loopy(df):
Cs, Ds = [], []
for _, row in df.iterrows():
c, d, = myfunc1(row['A'])
Cs.append(c)
Ds.append(d)
return pd.Series({'C': Cs,
'D': Ds})
def myfunc1(a):
c = a / 10
d = a + 50
return c, d
start = time.time()
df[['C', 'D']] = run_loopy(df)
end = time.time()
run_time.append(end-start)
print(np.average(run_time)) # 0.001240386962890625
Using lambda and to_list
run_time = []
for i in range(0,25):
df = pd.DataFrame(np.random.randint(0,10000000,size=(2, 2)), columns=list('AB'))
def myfunc1(a):
c = a / 10
d = a + 50
return [c, d]
start = time.time()
df[['C', 'D']] = df['A'].apply(lambda x: myfunc1(x)).to_list()
end = time.time()
run_time.append(end-start)
print(np.average(run_time)) #output 0.0009996891021728516