A solution using dplyr and tidyr.
First, let's create an example data frame. This data frame contains T1 and T3 data from two participants A and B.
# Set the seed for reproducibility
set.seed(123)
# Create an example data frame
dt <- data.frame(ID = 1:10,
A_T1 = runif(10),
A_T3 = runif(10),
B_T1 = runif(10),
B_T3 = runif(10))
dt
# ID A_T1 A_T3 B_T1 B_T3
# 1 1 0.2875775 0.95683335 0.8895393 0.96302423
# 2 2 0.7883051 0.45333416 0.6928034 0.90229905
# 3 3 0.4089769 0.67757064 0.6405068 0.69070528
# 4 4 0.8830174 0.57263340 0.9942698 0.79546742
# 5 5 0.9404673 0.10292468 0.6557058 0.02461368
# 6 6 0.0455565 0.89982497 0.7085305 0.47779597
# 7 7 0.5281055 0.24608773 0.5440660 0.75845954
# 8 8 0.8924190 0.04205953 0.5941420 0.21640794
# 9 9 0.5514350 0.32792072 0.2891597 0.31818101
# 10 10 0.4566147 0.95450365 0.1471136 0.23162579
We can use dplyr and tidyr to convert the data frame from wide format to long format and perform the operation. Diff is the difference between T1 and T3.
# Load packages
library(dplyr)
library(tidyr)
dt2 <- dt %>%
gather(Column, Value, -ID) %>%
separate(Column, into = c("Participant", "Group")) %>%
spread(Group, Value) %>%
mutate(Diff = T1 - T3)
dt2
# ID Participant T1 T3 Diff
# 1 1 A 0.2875775 0.95683335 -0.66925583
# 2 1 B 0.8895393 0.96302423 -0.07348492
# 3 2 A 0.7883051 0.45333416 0.33497098
# 4 2 B 0.6928034 0.90229905 -0.20949564
# 5 3 A 0.4089769 0.67757064 -0.26859371
# 6 3 B 0.6405068 0.69070528 -0.05019846
# 7 4 A 0.8830174 0.57263340 0.31038400
# 8 4 B 0.9942698 0.79546742 0.19880236
# 9 5 A 0.9404673 0.10292468 0.83754260
# 10 5 B 0.6557058 0.02461368 0.63109211
# 11 6 A 0.0455565 0.89982497 -0.85426847
# 12 6 B 0.7085305 0.47779597 0.23073450
# 13 7 A 0.5281055 0.24608773 0.28201775
# 14 7 B 0.5440660 0.75845954 -0.21439351
# 15 8 A 0.8924190 0.04205953 0.85035951
# 16 8 B 0.5941420 0.21640794 0.37773408
# 17 9 A 0.5514350 0.32792072 0.22351430
# 18 9 B 0.2891597 0.31818101 -0.02902127
# 19 10 A 0.4566147 0.95450365 -0.49788891
# 20 10 B 0.1471136 0.23162579 -0.08451214
If the original format is desirable, we can further spread the data frame to the original format.
dt3 <- dt2 %>%
select(-starts_with("T")) %>%
spread(Participant, Diff)
dt3
# ID A B
# 1 1 -0.6692558 -0.07348492
# 2 2 0.3349710 -0.20949564
# 3 3 -0.2685937 -0.05019846
# 4 4 0.3103840 0.19880236
# 5 5 0.8375426 0.63109211
# 6 6 -0.8542685 0.23073450
# 7 7 0.2820178 -0.21439351
# 8 8 0.8503595 0.37773408
# 9 9 0.2235143 -0.02902127
# 10 10 -0.4978889 -0.08451214