Here's a brute-force solution. It uses the powerset recipe from the Itertools Recipes in the docs to generate all the subsets. It then sorts and groups them by sum, using itertools.groupby. Then finally it checks all pairs of subsets with the same sum to find pairs that do not intersect.
from itertools import chain, combinations, groupby
def equal_sum_partitions(seq):
subsets = chain.from_iterable(combinations(seq, r) for r in range(len(seq)+1))
for k, g in groupby(sorted(subsets, key=sum), key=sum):
group = [set(u) for u in g]
if len(group) > 1:
for u, v in combinations(group, 2):
if not u & v:
print(k, (u, v))
# test
equal_sum_partitions([2, 4, 8, 6, 3, 5])
output
5 ({5}, {2, 3})
6 ({6}, {2, 4})
7 ({2, 5}, {3, 4})
8 ({8}, {2, 6})
8 ({8}, {3, 5})
8 ({2, 6}, {3, 5})
9 ({4, 5}, {3, 6})
10 ({8, 2}, {4, 6})
10 ({4, 6}, {2, 3, 5})
11 ({8, 3}, {5, 6})
11 ({8, 3}, {2, 4, 5})
13 ({8, 5}, {3, 4, 6})
14 ({8, 6}, {2, 3, 4, 5})
14 ({8, 2, 4}, {3, 5, 6})