I want to build a tree using exactly two structs: Node and Tree and then recursively search for a target node from the tree. If a target is found, return true, else return false.
The challenge for me here is how to recursively call the find function, since it is only defined on Tree not Node.
pub struct Node<T> {
value: T,
left: Option<Box<Node<T>>>,
right: Option<Box<Node<T>>>,
}
pub struct Tree<T> {
root: Option<Box<Node<T>>>,
}
impl<T: Ord> Tree<T> {
/// Creates an empty tree
pub fn new() -> Self {
Tree { root: None }
}
// search the tree
pub fn find(&self, key: &T) -> bool {
let root_node = &self.root; // root is Option
match *root_node {
Some(ref node) => {
if node.value == *key {
return true;
}
let target_node = if *key < node.value {
&node.left
} else {
&node.right
};
match *target_node {
Some(sub_node) => sub_node.find(key),
None => {
return false;
}
}
}
None => return false,
}
}
}
fn main() {
let mut mytree: Tree<i32> = Tree::new();
let node1 = Node {
value: 100,
left: None,
right: None,
};
let boxed_node1 = Some(Box::new(node1));
let root = Node {
value: 200,
left: boxed_node1,
right: None,
};
let boxed_root = Some(Box::new(root));
let mytree = Tree { root: boxed_root };
let res = mytree.find(&100);
}
The current code reports the error:
error: no method named `find` found for type `Box<Node<T>>` in the current scope
--> src/main.rs:36:48
|
36 | Some(sub_node) => sub_node.find(key),
| ^^^^
|
= note: the method `find` exists but the following trait bounds were not satisfied: `Node<T> : std::iter::Iterator`
= help: items from traits can only be used if the trait is implemented and in scope; the following traits define an item `find`, perhaps you need to implement one of them:
= help: candidate #1: `std::iter::Iterator`
= help: candidate #2: `core::str::StrExt`
I understand that find is only implemented on Tree, so there is an error, but I don't think it is efficient to implement find on both Tree and Node. Any hint to solve this?