Try
dat1 <- dat #to keep a copy of the original dataset
indx <- sapply(dat, is.numeric)#check which columns are numeric
nm1 <- which(indx)#get the numeric index of the column
indx2 <- duplicated(names(nm1))#check which among the
# integer columns are duplicated
#use `Map` after splitting the "nm1" with its "names", do the `rowSums`
dat[ nm1[!indx2]] <- Map(function(x,y) rowSums(x[y]), list(dat),
split(nm1, names(nm1)))
dat[ -nm1[indx2]]
Update
Or to make it more efficient, only take the "duplicated" and "numeric" columns while leaving the others intact. Create an "index" (indx2) of columns that are duplicated. Subset the "nm1" based on the "indx2" and then do rowSums as described above. Finally, remove the unwanted columns (duplicated ones) by using the "indx3"
indx2 <- duplicated(names(nm1))|duplicated(names(nm1),fromLast=TRUE)
nm2 <- nm1[indx2]
indx3 <- duplicated(names(nm2))
dat[nm2[!indx3]] <- Map(function(x,y) rowSums(x[y]),
list(dat),split(nm2, names(nm2)))
datN <- dat[ -nm2[indx3]]
datN
# col1 col2 col3 col4 col5
#1 16 23 2 10 10
#2 10 18 12 8 18
#3 21 23 15 6 10
#4 14 37 3 5 15
#5 29 39 5 1 11
#6 26 31 14 2 20
#7 25 31 2 8 10
#8 36 31 12 8 6
#9 32 26 13 6 4
#10 16 38 1 7 3
Checking the results
rowSums(dat1[names(dat1) %in% 'col1'])
#[1] 16 10 21 14 29 26 25 36 32 16
rowSums(dat1[names(dat1) %in% 'col2'])
#[1] 23 18 23 37 39 31 31 31 26 38
data
dat <- structure(list(col1 = c(6L, 5L, 15L, 11L, 14L, 19L, 6L, 16L,
17L, 6L), col2 = c(13L, 8L, 14L, 14L, 7L, 19L, 4L, 1L, 11L, 3L
), col3 = structure(c(2L, 5L, 8L, 3L, 4L, 7L, 2L, 5L, 6L, 1L), .Label = c("1",
"2", "3", "5", "12", "13", "14", "15"), class = "factor"), col2 = c(7L,
5L, 8L, 3L, 19L, 5L, 15L, 13L, 14L, 20L), col4 = structure(c(7L,
6L, 4L, 3L, 1L, 2L, 6L, 6L, 4L, 5L), .Label = c("1", "2", "5",
"6", "7", "8", "10"), class = "factor"), col5 = c(10L, 18L, 10L,
15L, 11L, 20L, 10L, 6L, 4L, 3L), col1 = c(10L, 5L, 6L, 3L, 15L,
7L, 19L, 20L, 15L, 10L), col2 = c(3L, 5L, 1L, 20L, 13L, 7L, 12L,
17L, 1L, 15L)), .Names = c("col1", "col2", "col3", "col2", "col4",
"col5", "col1", "col2"), row.names = c(NA, -10L), class = "data.frame")