If have a data frame which holds 2 type of observations, coded by IDs (id.1, id.2) with corresponding values (val.1, val.2) and several other data represented in this example by val.other.
set.seed(1)
# df.master
id.1= c("abc", "def", "ghi", "jkl")
val.1= c(1, 2, 3, 4)
id.2= c("mno", "pqr", "stu", "vwx")
val.2= c(5, 6, 7, 8)
val.other= rep(runif(1),4)
df.master= data.frame(id.1, id.2, val.other, val.1, val.2)
df.master looks like:
id.1 id.2 val.other val.1 val.2
1 abc mno 0.2655087 1 5
2 def pqr 0.2655087 2 6
3 ghi stu 0.2655087 3 7
4 jkl vwx 0.2655087 4 8
I generate new data stored separately in a 2nd and 3rd data frame df.new.1 and df.new.2.
df.new.1 looks like:
id.3 val.3
1 abc 10
2 ghi 20
3 stu 30
# Create an 2nd data frame, which contains new values
id.3= c("abc", "ghi", "stu")
val.3= c(10, 20, 30)
df.new.1= data.frame(id.3, val.3)
df.new.2 looks like:
id.4 val.4
1 def 100
2 vwx 200
# Create an 3rd data frame, which contains new values
id.4= c("def", "vwx")
val.4= c(100, 200)
df.new.2= data.frame(id.4, val.4)
I want to update df.master based on contents of df.new.1 and df.new.2 while keeping the original structure of df.master leading to following result:
id.1 id.2 val.other val.1 val.2
1 abc mno 0.2655087 10 5
2 def pqr 0.2655087 100 6
3 ghi stu 0.2655087 20 30
4 jkl vwx 0.2655087 4 200
Please note that df.new.1 and df.new.2 contain a mix of new data matching id.1 and id.2 of df.master.
Any suggestions for code to perform the update of df.master?