Some more differences description looking it from memory addressing view as follows,
I. char **p; p is double pointer of type char
Declaration:
char a = 'g';
char *b = &a;
char **p = &b;
p b a
+------+ +------+ +------+
| | | | | |
|0x2000|------------>|0x1000|------------>| g |
| | | | | |
+------+ +------+ +------+
0x3000 0x2000 0x1000
Figure 1: Typical memory layout assumption
In above declaration, a is char type containing a character g. Pointer b contains the address of an existing character variable a. Now b is address 0x1000 and *b is character g. Finally address of b is assigned to p, therefore a is a character variable, b is pointer and p is pointer to pointer. Which implies a contains value, b contains address and p contains address of address as shown below in the diagram.
Here, sizeof(p) = sizeof(char *) on respective system;
II. char *p[M]; p is array of strings
Declaration:
char *p[] = {"Monday", "Tuesday", "Wednesday"};
p
+------+
| p[0] | +----------+
0 | 0x100|------>| Monday\0 |
| | +----------+
|------| 0x100
| p[1] | +-----------+
1 | 0x200|------>| Tuesday\0 |
| | +-----------+
|------| 0x200
| p[2] | +-------------+
2 | 0x300|------>| Wednesday\0 |
| | +-------------+
+------+ 0x300
Figure 2: Typical memory layout assumption
In this declaration, p is array of 3 pointers of type char. Implies array p can hold 3 strings. Each string (Monday, Tuesday & Wednesday) is located some where in memory (0x100, 0x200 & 0x300), there addresses are in array p as (p[0], p[1] & p[2]) respectively. Hence it is array of pointers.
Notes: char *p[3];
1. p[0], p[1] & p[2] are addresses of strings of type `char *`.
2. p, p+1 & p+2 are address of address with type being `char **`.
3. Accessing elements is through, p[i][j] is char; p[i] is char *; & p is char **
Here sizeof(p) = Number of char array * sizeof(char *)
III. char p[M][N]; p is array of fixed length strings with dimensions as M x N
Declaration:
char p[][10] = {Monday, Tuesday, Wednesday};
p 0x1 2 3 4 5 6 7 8 9 10
+-------------------------+
0 | M o n d a y \0 \0 \0 \0|
1 | T u e s d a y \0 \0 \0|
2 | W e d n e s d a y \0|
+-------------------------+
Figure 3: Typical memory layout assumption
In this case array p contain 3 strings each containing 10 characters. Form the memory layout we can say p is a two dimensional array of characters with size MxN, which is 3x10 in our example. This is useful for representing strings of equal length since there is a possibility of memory wastage when strings contains lesser than 10 characters compared to declaration char *p[], which has no memory wastage because string length is not specified and it is useful for representing strings of unequal length.
Accessing elements is similar as above case, p[M] is M'th string & p[M][N] is N'th character of M'th string.
Here sizeof(p) = (M rows * N columns) * sizeof(char) of two dimensional array;