It is not possible; Before a is assigned to, a temporary object will be created as a result of calling operator + (b, c); This operator should return the created instance, that should then be assigned to a; the created instance is always created by b + c.
What is possible though is to define += as a member operator and say:
b += c;
This would modify the value of b without creating extra copies.
Edit: I have reconsidered :)
You definitely can do it, by abstracting operations as lazy evaluation objects.
Here is an example:
class MyClass; // fwd. declaration of your class
struct LazySum
{
LazySum(const MyClass& a, const MyClass& b)
: x(a), y(b) {}
float operator[](int i) { return x[i] + y[i]; }
const MyClass& x;
const MyClass& y;
};
class MyClass
{
public:
MyClass(int N)
{
data_ptr = new float[n = N];
};
int n; // this shouldn't be public
float* dat_ptr; // nor this, but I went with your code
// ... clever operator definition here ...
MyClass& operator=(const LazySum& terms)
{
// ignore case when n != x.n or n != y.n
// because not the point of the example
// (and I'm lazy)
// sum evaluation occurs here
// with no new allocations
for(int i = 0; i < n; ++i)
data_ptr[i] = terms[i];
return *this;
}
};
LazySum operator=(const MyClass& x, const MyClass& y)
{
return LazySum(x, y); // LazySum is a couple of references in size
}
void client_code_using_clever_op()
{
MyClass a(4);
MyClass b(4);
MyClass c(4);
// modify b.data_ptr and c.data_ptr ....
// Use "clever operator"
a = b + c; // actual sum performed when operator = is executed
}
The idea is to store the terms, and perform late evaluation on the terms.
Points of improvement:
inject a functor in the construction of LazySum to make it become LazyOp (the functor would decide what the op is); Implement other binary operators on MyClass in terms of it.
use RAII in MyClass.
when you need to implement lazy evaluation operators on another type (e.g. some MyOtherClass) consider implementing LazyOp as a template on the terms and functor type.
this does not support more complex expressions without some extra work:
MyClass a(4), b(4), c(4), d(4);
d = (a + b) + c; // error
This example will not work because it would require an operator+(const LazySum&, const MyClass&);;